Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(15): 10367-10380, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38569081

RESUMO

Comparison of bonding and electronic structural features between trivalent lanthanide (Ln) and actinide (An) complexes across homologous series' of molecules can provide insights into subtle and overt periodic trends. Of keen interest and debate is the extent to which the valence f- and d-orbitals of trivalent Ln/An ions engage in covalent interactions with different ligand donor functionalities and, crucially, how bonding differences change as both the Ln and An series are traversed. Synthesis and characterization (SC-XRD, NMR, UV-vis-NIR, and computational modeling) of the homologous lanthanide and actinide N-heterocyclic carbene (NHC) complexes [M(C5Me5)2(X)(IMe4)] {X = I, M = La, Ce, Pr, Nd, U, Np, Pu; X = Cl, M = Nd; X = I/Cl, M = Nd, Am; and IMe4 = [C(NMeCMe)2]} reveals consistently shorter An-C vs Ln-C distances that do not substantially converge upon reaching Am3+/Nd3+ comparison. Specifically, the difference of 0.064(6) Å observed in the La/U pair is comparable to the 0.062(4) Å difference observed in the Nd/Am pair. Computational analyses suggest that the cause of this unusual observation is rooted in the presence of π-bonding with the valence d-orbital manifold in actinide complexes that is not present in the lanthanide congeners. This is in contrast to other documented cases of shorter An-ligand vs Ln-ligand distances, which are often attributed to increased 5f vs 4f radial diffusivity leading to differences in 4f and 5f orbital bonding involvement. Moreover, in these traditional observations, as the 5f series is traversed, the 5f manifold contracts such that by americium structural studies often find no statistically significant Am3+vs Nd3+ metal-ligand bond length differences.

2.
Inorg Chem ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37851526

RESUMO

Gallium trichloride (GaCl3) was used as a solvent for the oxidative dissolution of the lanthanide (Ln) metals cerium (Ce) and holmium (Ho). Reactions were performed at temperatures above 100 °C in sealed vessels to maintain the liquid phase for GaCl3 during the oxidizing reactions. The best results were obtained from reactions using 8 equiv of GaCl3 to metal where the inorganic complexes [Ga][Ln(GaCl4)4] [Ln = Ce (1), Ho (2)] could be isolated. Recrystallization of 1 and 2 employing fluorobenzene (C6H5F) produced [Ga(η6-C6H5F)2][Ln(GaCl4)4] [Ln = Ce (3), Ho (4)] where reversible η6 coordination of C6H5F to [Ga]+ was observed. All complexes were characterized through elemental analysis (F and Cl), IR and UV-vis-near-IR spectroscopies, and both solution and solid-state NMR techniques.

3.
NMR Biomed ; 36(5): e4873, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36347826

RESUMO

T1 relaxation times of the 14 T1 phantom spheres that make up the standard International Society for Magnetic Resonance in Medicine (ISMRM)/National Institute of Standards and Technology (NIST) system phantom are reported at 7 T. T1 values of six of the 14 T1 spheres at 7 T (with T1 > 270 ms) have been reported previously, but, to the best of our knowledge, not all of the T1s of the 14 T1 spheres at 7 T have been reported before. Given the increasing number of 7-T MRI systems in clinical settings and the increasing need for T1 phantoms that cover a wide range of T1 relaxation times to evaluate rapid T1 mapping techniques at 7 T, it is of high interest to obtain accurate T1 values for all the ISMRM/NIST T1 spheres at 7 T. In this work, T1 relaxation time was measured on a 7-T MRI scanner using an inversion-recovery spin-echo pulse sequence and derived by curve fitting to a signal equation that exhibits insensitivity to B 1 + inhomogeneity. Day-to-day reproducibility was within 0.4% and differences between two different RF coils within 1.5%. T1s of a subset of the 14 spheres were also measured by NMR at 7 T for comparison, and the T1 results were consistent between the MRI and NMR measurements. T1 measurements performed at 3 T on the same 14 spheres using the same sequence and fitting method yielded good agreement (mean percentage difference of -0.4%) with the reference T1 values available from the NIST, reflecting the accuracy of the reported technique despite being without the standard phantom housing. We found that the T1 values of all 14 NiCl2 spheres are consistently lower at 7 T than at 3 T. Although our results were well reproduced, this study represents initial work to quantify the 7-T T1 values of all 14 NIST T1 spheres outside of the standard housing and does not warrant reproducibility of the ISMRM/NIST system phantom as a whole. A future study to assess the T1 values of a version of the ISMRM/NIST system phantom that fits inside typical commercial coils at 7 T will be very helpful. Nonetheless, the details on our acquisition and curve-fitting methods reported here allow the T1 measurements to be reproduced elsewhere. The T1 values of all 14 spheres reported here will be valuable for the development of quantitative MR fingerprinting and rapid T1 mapping for a large variety of research projects, not only in neuroimaging but also in body MRI, musculoskeletal MRI, and gadolinium contrast-enhanced MRI, each of which is concerned with much shortened T1.


Assuntos
Imageamento por Ressonância Magnética , Neuroimagem , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Valores de Referência
4.
Chem Commun (Camb) ; 58(95): 13278-13281, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36373547

RESUMO

σ-Hydrocarbyl complexes of the form [M(η5-PC4Me4)2(µ-η1:η6-CH2Ph)2K(η6-arene)] (M = La, Ce, Pr, U, Np, Pu; arene = benzene or toluene) were synthesised in one-pot reactions from [MI3(THF)4], or [U(BH4)3(toluene)] (M = U). All complexes were examined by multinuclear (1H, 13C{1H}, 31P{1H}) NMR and UV-vis-NIR spectroscopy, as well as single-crystal X-ray diffraction from which molecular metal-phosphorus bonds for Np and Pu, and a σ-hydrocarbyl metal-carbon bond for Pu, have been structurally authenticated.

5.
Inorg Chem ; 61(32): 12508-12517, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35905438

RESUMO

The first uranium bis(acyl)phosphide (BAP) complexes were synthesized from the reaction between sodium bis(mesitoyl)phosphide (Na(mesBAP)) or sodium bis(2,4,6-triisopropylbenzoyl)phosphide (Na(trippBAP)) and UI3(1,4-dioxane)1.5. Thermally stable, homoleptic BAP complexes were characterized by single-crystal X-ray diffraction and electron paramagnetic resonance (EPR) spectroscopy, when appropriate, for the elucidation of the electronic structure and bonding of these complexes. EPR spectroscopy revealed that the BAP ligands on the uranium center retain a significant amount of electron density. The EPR spectrum of the trivalent U(trippBAP)3 has a rhombic signal near g = 2 (g1 = 2.03; g2 = 2.01; and g3 = 1.98) that is consistent with the EPR-observed unpaired electron being located in a molecular orbital that appears ligand-derived. However, upon warming the complex to room temperature, no resonance was observed, indicating the presence of uranium character.


Assuntos
Urânio , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Modelos Moleculares , Sódio , Urânio/química
6.
Dalton Trans ; 51(26): 9994-10005, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35739082

RESUMO

Developing chelators that strongly and selectively bind rare-earth elements (Sc, Y, La, and lanthanides) represents a longstanding fundamental challenge in inorganic chemistry. Solving these challenges is becoming more important because of increasing use of rare-earth elements in numerous technologies, ranging from paramagnets to luminescent materials. Within this context, we interrogated the complexation chemistry of the scandium(III) (Sc3+) trication with the hexadentate 1,4,7-triazacyclononane-1,4,7-triacetic acid (H3NOTA) chelator. This H3NOTA chelator is often regarded as an underperformer for complexing Sc3+. A common assumption is that metalation does not fully encapsulate Sc3+ within the NOTA3- macrocycle, leaving Sc3+ on the periphery of the chelate and susceptible to demetalation. Herein, we developed a synthetic approach that contradicted those assumptions. We confirmed that our procedure forced Sc3+ into the NOTA3- binding pocket by using single crystal X-ray diffraction to determine the Na[Sc(NOTA)(OOCCH3)] structure. Density functional theory (DFT) and 45Sc nuclear magnetic resonance (NMR) spectroscopy showed Sc3+ encapsulation was retained when the crystals were dissolved. Solution-phase and DFT studies revealed that [Sc(NOTA)(OOCCH3)]1- could accommodate an additional H2O capping ligand. Thermodynamic properties associated with the Sc-OOCCH3 and Sc-H2O capping ligand interactions demonstrated that these capping ligands occupied critical roles in stabilizing the [Sc(NOTA)] chelation complex.


Assuntos
Compostos Heterocíclicos com 1 Anel , Escândio , Quelantes/química , Compostos Heterocíclicos com 1 Anel/química , Ligantes , Escândio/química
7.
J Am Chem Soc ; 143(49): 20680-20696, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34854294

RESUMO

Direct comparison of homologous molecules provides a foundation from which to elucidate both subtle and patent changes in reactivity patterns, redox processes, and bonding properties across a series of elements. While trivalent molecular U chemistry is richly developed, analogous Np or Pu research has long been hindered by synthetic routes often requiring scarcely available metallic-phase source material, high-temperature solid-state reactions producing poorly soluble binary halides, or the use of pyrophoric reagents. The development of routes to nonaqueous Np3+/Pu3+ from widely available precursors can potentially transform the scope and pace of research into actinide periodicity. Here, aqueous stocks of An4+ (An = Np, Pu) are dehydrated to well-defined [AnCl4(DME)2] (DME = 1,2-dimethoxyethane), and then a single-step halide exchange/reduction employing Me3SiI produces [AnI3(THF)4] (THF = tetrahydrofuran) in a high to nearly quantitative crystalline yield (with I2 and Me3SiCl as easily removed byproducts). We demonstrate the synthetic utility of these An-iodide molecules, prepared by metal0-free routes, through characterization of archetypal complexes including the tris-silylamide, [Np{N(SiMe3)2}3], and bent metallocenes, [An(C5Me5)2(I)(THF)] (An = Np, Pu)─chosen because both motifs are ubiquitous in Th, U, and lanthanide research. The synthesis of [Np{N(Se═PPh2)2}3] is also reported, completing an isomorphous series that now extends from U to Am and is the first characterized Np3+-Se bond.

8.
Nature ; 599(7885): 421-424, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34789902

RESUMO

Californium (Cf) is currently the heaviest element accessible above microgram quantities. Cf isotopes impose severe experimental challenges due to their scarcity and radiological hazards. Consequently, chemical secrets ranging from the accessibility of 5f/6d valence orbitals to engage in bonding, the role of spin-orbit coupling in electronic structure, and reactivity patterns compared to other f elements, remain locked. Organometallic molecules were foundational in elucidating periodicity and bonding trends across the periodic table1-3, with a twenty-first-century renaissance of organometallic thorium (Th) through plutonium (Pu) chemistry4-12, and to a smaller extent americium (Am)13, transforming chemical understanding. Yet, analogous curium (Cm) to Cf chemistry has lain dormant since the 1970s. Here, we revive air-/moisture-sensitive Cf chemistry through the synthesis and characterization of [Cf(C5Me4H)2Cl2K(OEt2)]n from two milligrams of 249Cf. This bent metallocene motif, not previously structurally authenticated beyond uranium (U)14,15, contains the first crystallographically characterized Cf-C bond. Analysis suggests the Cf-C bond is largely ionic with a small covalent contribution. Lowered Cf 5f orbital energy versus dysprosium (Dy) 4f in the colourless, isoelectronic and isostructural [Dy(C5Me4H)2Cl2K(OEt2)]n results in an orange Cf compound, contrasting with the light-green colour typically associated with Cf compounds16-22.

9.
Angew Chem Int Ed Engl ; 60(17): 9459-9466, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33529478

RESUMO

Covalency is often considered to be an influential factor in driving An3+ vs. Ln3+ selectivity invoked by soft donor ligands. This is intensely debated, particularly the extent to which An3+ /Ln3+ covalency differences prevail and manifest as the f-block is traversed, and the effects of periodic breaks beyond Pu. Herein, two Am complexes, [Am{N(E=PPh2 )2 }3 ] (1-Am, E=Se; 2-Am, E=O) are compared to isoradial [Nd{N(E=PPh2 )2 }3 ] (1-Nd, 2-Nd) complexes. Covalent contributions are assessed and compared to U/La and Pu/Ce analogues. Through ab initio calculations grounded in UV-vis-NIR spectroscopy and single-crystal X-ray structures, we observe differences in f orbital involvement between Am-Se and Nd-Se bonds, which are not present in O-donor congeners.

10.
Solid State Nucl Magn Reson ; 110: 101697, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33075622

RESUMO

We report the 1H T1 dispersion curve between 0 and 5 â€‹MHz for the synthetic opioid fentanyl citrate (C28H36N2O8). The structures in the curve can be used to estimate the 14N nuclear quadrupole resonance (NQR) frequencies of the material. Density functional theory predictions of the NQR parameters of several fentanyl citrate compounds are also reported. The predictions for the aniline nitrogen are consistent with structures in the observed T1 data. To help interpret the fentanyl citrate results the T1 dispersion curve for the explosive ammonium nitrate is also presented.

11.
J Am Chem Soc ; 142(42): 18160-18173, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32927952

RESUMO

The incorporation of manganese (Mn) ions into Cd(Zn)-chalcogenide QDs activates strong spin-exchange interactions between the magnetic ions and intrinsic QD excitons that have been exploited for color conversion, sunlight harvesting, electron photoemission, and advanced imaging and sensing. The ability to take full advantage of novel functionalities enabled by Mn dopants requires accurate control of doping levels over a wide range of Mn contents. This, however, still represents a considerable challenge. Specific problems include the difficulty in obtaining high Mn contents, considerable broadening of QD size dispersion during the doping procedure, and large batch-to-batch variations in the amount of incorporated Mn. Here, we show that these problems originate from the presence of unreacted cadmium (Cd) complexes whose abundance is linked to uncontrolled impurities participating in the QD synthesis. After identifying these impurities as secondary phosphines, we modify the synthesis by introducing controlled amounts of "functional" secondary phosphine species. This allows us to realize a regime of nearly ideal QD doping when incorporation of magnetic ions occurs solely via addition of Mn-Se units without uncontrolled deposition of Cd-Se species. Using this method, we achieve very high per-dot Mn contents (>30% of all cations) and thereby realize exceptionally strong exciton-Mn exchange coupling with g-factors of ∼600.

12.
Rev Sci Instrum ; 91(5): 054103, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32486714

RESUMO

In recent years, it has been realized that low and ultra-low field (mT-nT magnetic field range) nuclear magnetic resonance spectroscopy can be used for molecular structural analysis. However, spectra are often hindered by lengthy acquisition times or require large sample volumes and high concentrations. Here, we report a low field (50 µT) instrument that employs a linear actuator to shuttle samples between a 1 T prepolarization field and a solenoid detector in a laboratory setting. The current experimental setup is benchmarked using water and 13C-methanol with a single scan detection limit of 2 × 1020 spins (3 µl, 55M H2O) and detection limit of 2.9 × 1019 (200 µl, 617 mM 13C-methanol) spins with signal averaging. The system has a dynamic range of >3 orders of magnitude. Investigations of room-temperature relaxation dynamics of 13C-methanol show that sample dilution can be used in lieu of sample heating to acquire spectra with linewidths comparable to high-temperature spectra. These results indicate that the T1 and T2 mechanisms are governed by both the proton exchange rate and the dissolved oxygen in the sample. Finally, a 2D correlation spectroscopy experiment is reported, performed in the strong coupling regime that resolves the multiple resonances associated with the heteronuclear J-coupling. The spectrum was collected using 10 times less sample and in less than half the time from previous reports in the strong coupling limit.

13.
Anal Chem ; 92(10): 6918-6924, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32338873

RESUMO

A new method for measurement of elemental analysis by nuclear magnetic resonance (NMR) of unknown samples is discussed here as a quick and robust means to measure elemental ratios without the use of internal or external calibration standards. The determination of elemental ratios was done by normalizing the signal intensities by the frequency dependent quality factor (Q) and the gyromagnetic ratios (γ) for each measured nucleus. The correction for the frequency dependence was found by characterizing the output signal of the probe as a function of the quality factor (Q) and the frequency, and the correction for γ was discussed in a previous study. A Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence was used for evaluation of the relative signal intensities, which allows for derivation of elemental ratios, and was correspondingly used to simultaneously measure the T2* of samples for an added parameter for more accurate identification of unknown samples.

14.
J Am Chem Soc ; 140(24): 7425-7428, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29870238

RESUMO

We report a new formal oxidation state for neptunium in a crystallographically characterizable molecular complex, namely Np2+ in [K(crypt)][NpIICp″3] [crypt = 2.2.2-cryptand, Cp″ = C5H3(SiMe3)2]. Density functional theory calculations indicate that the ground state electronic configuration of the Np2+ ion in the complex is 5f46d1.

15.
J Am Chem Soc ; 139(11): 3970-3973, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28235179

RESUMO

Over 70 years of chemical investigations have shown that plutonium exhibits some of the most complicated chemistry in the periodic table. Six Pu oxidation states have been unambiguously confirmed (0 and +3 to +7), and four different oxidation states can exist simultaneously in solution. We report a new formal oxidation state for plutonium, namely Pu2+ in [K(2.2.2-cryptand)][PuIICp″3], Cp″ = C5H3(SiMe3)2. The synthetic precursor PuIIICp″3 is also reported, comprising the first structural characterization of a Pu-C bond. Absorption spectroscopy and DFT calculations indicate that the Pu2+ ion has predominantly a 5f6 electron configuration with some 6d mixing.

16.
ChemSusChem ; 9(24): 3382-3386, 2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-27933751

RESUMO

A simple, inexpensive catalyst system (Amberlyst 15 and Ni/SiO2 -Al2 O3 ) is described for the upgrading of acetone to a range of chemicals and potential fuels. Stepwise hydrodeoxygenation of the produced ketones can yield branched alcohols, alkenes, and alkanes. An analysis of these products is provided, which demonstrates that this approach can provide a product profile of valuable bioproducts and potential biofuels.


Assuntos
Acetona/química , Carbono/química , Gasolina , 2-Propanol/química , Técnicas de Química Sintética , Hidrogenação
17.
Dalton Trans ; 45(24): 9841-52, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-26903261

RESUMO

Treatment of either triphenyl(chloro)silane or tert-butyldiphenyl(chloro)silane with potassium metal in THF, followed by addition of 18-crown-6, affords [K(18-crown-6)][SiPh3] () and [K(18-crown-6)][SiPh2(t)Bu] (), respectively, as the reaction products in high yield. Compounds and were fully characterized including by multi-nuclear NMR, UV/vis and IR spectroscopies. Addition of elemental chalcogen to either or , results in facile chalcogen insertion into the potassium-silicon bond to afford the silylchalcogenolates, [K(18-crown-6)][E-SiPh2R] (E = S, R = Ph (); E = Se, R = Ph (); E = Te, R = Ph (); E = S, R = (t)Bu (); E = Se, R = (t)Bu (); E = Te, R = (t)Bu ()), in moderate to good yield. The silylchalcogenolates reported herein were characterized by multi-nuclear NMR, UV/vis and IR spectroscopies, and their solid-state molecular structures were determined by single-crystal X-ray crystallography. Importantly, the reported compounds crystallize as discrete monomers in the solid-state, a structural feature not previously observed in silylchalcogenolates, providing well-defined access routes into systematic metal complexation studies.

18.
Dalton Trans ; 44(43): 18923-36, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26466973

RESUMO

New members of the dithiophosphinic acid family of potential actinide extractants were prepared: heterocyclic 2,2'-biphenylenedithiophosphinic acids of stoichiometry HS2P(R2C12H6) (R = H or (t)Bu). The time- and atom-efficient syntheses afforded multigram quantities of pure HS2P(R2C12H6) in reasonable yields (∼60%). These compounds differed from other diaryldithiophosphinic acid extractants in that the two aryl groups were connected to one another at the ortho positions to form a 5-membered dibenzophosphole ring. These 2,2'-biphenylenedithiophosphinic acids were readily deprotonated to form S2P(R2C12H6)(1-) anions, which were crystallized as salts with tetraphenylpnictonium cations (ZPh4(1+); Z = P or As). Coordination chemistry between [S2P((t)Bu2C12H6)](1-) and [S2P(C6H5)2](1-) with U, Np, and Pu was comparatively investigated. The results showed that dithiophosphinate complexes of U(IV) and Np(IV) were redox stable relative to those of U(III), whereas reactions involving Pu(IV) gave intractable material. For instance, reactions involving U(IV) and Np(IV) generated An[S2P((t)Bu2C12H6)]4 and An[S2P(C6H5)2]4 whereas reactions between Pu(IV) and [S2P(C6H5)2](1-) generated a mixture of products from which we postulated a transient Pu(III) species based on UV-Vis spectroscopy. However, the trivalent Pu[S2P(C6H5)2]3(NC5H5)2 compound is stable and could be isolated from reactions between [S2P(C6H5)2](1-) and the trivalent PuI3(NC5H5)4 starting material. Attempts to synthesize analogous trivalent compounds with U(III) provided the tetravalent U[S2P(C6H5)2]4 oxidation product.

19.
Dalton Trans ; 44(36): 16156-63, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26295362

RESUMO

The synthesis and full characterization, including Nuclear Magnetic Resonance (NMR) data ((1)H, (13)C{(1)H} and (119)Sn{(1)H}), for a series of Me3SnX (X = O-2,6-(t)Bu2C6H3 (), (Me3Sn)N(2,6-(i)Pr2C6H3) (), NH-2,4,6-(t)Bu3C6H2 (), N(SiMe3)2 (), NEt2, C5Me5 (), Cl, Br, I, and SnMe3) compounds in benzene-d6, toluene-d8, dichloromethane-d2, chloroform-d1, acetonitrile-d3, and tetrahydrofuran-d8 are reported. The X-ray crystal structures of Me3Sn(O-2,6-(t)Bu2C6H3) (), Me3Sn(O-2,6-(i)Pr2C6H3) (), and (Me3Sn)(NH-2,4,6-(t)Bu3C6H2) () are also presented. These compiled data complement existing literature data and ease the characterization of these compounds by routine NMR experiments.

20.
Angew Chem Int Ed Engl ; 53(14): 3588-93, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24677748

RESUMO

Graphene oxide (GO) contains several chemical functional groups that are attached to the graphite basal plane and can be manipulated to tailor GO for specific applications. It is now revealed that the reaction of GO with ozone results in a high level of oxidation, which leads to significantly improved ionic (protonic) conductivity of the GO. Freestanding ozonated GO films were synthesized and used as efficient polymer electrolyte fuel cell membranes. The increase in protonic conductivity of the ozonated GO originates from enhanced proton hopping, which is due to the higher content of oxygenated functional groups in the basal planes and edges of ozonated GO as well as the morphology changes in GO that are caused by ozonation. The results of this study demonstrate that the modification of dispersed GO presents a powerful opportunity for optimizing a nanoscale material for proton-exchange membranes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...